Sub-Threshold Standard Cell Sizing Methodology and Library Comparison
نویسندگان
چکیده
Scaling the voltage to the sub-threshold region is a convincing technique to achieve low power in digital circuits. The problem is that process variability severely impacts the performance of circuits operating in the sub-threshold domain. In this paper, we evaluate the sub-threshold sizing methodology of [1,2] on 40 nm and 90 nm standard cell libraries. The concept of the proposed sizing methodology consists of balancing the mean of the sub-threshold current of the equivalent N and P networks. In this paper, the equivalent N and P networks are derived based on the best and worst case transition times. The slack available in the best-case timing arc is reduced by using smaller transistors on that path, while the timing of the worst-case timing arc is improved by using bigger transistors. The optimization is done such that the overall area remains constant with regard to the area before optimization. Two sizing styles are applied, one is based on both transistor width and length tuning, and the other one is based on width tuning only. Compared to super-threshold libraries, at 0.3 V, the proposed libraries achieve 49% and 89% average cell timing improvement and 55% and 31% power delay product improvement at 40 nm and 90 nm respectively. From ITC (International Test Conference 99) benchmark circuit synthesis results, at 0.3 V the proposed library achieves up to 52% timing improvement and 53% power savings in the 40 nm technology node. OPEN ACCESS J. Low Power Electron. Appl. 2013, 3 234
منابع مشابه
A Sub - threshold Cell Library and Methodology
Sub-threshold operation is a compelling approach for energy-constrained applications where speed is of secondary concern, but increased sensitivity to process variation must be mitigated in this regime. With scaling of process technologies, random within-die variation has recently introduced another degree of complexity in circuit design. This thesis proposes approaches to mitigate process vari...
متن کاملA Sub-threshold 9T SRAM Cell with High Write and Read ability with Bit Interleaving Capability
This paper proposes a new sub-threshold low power 9T static random-access memory (SRAM) cell compatible with bit interleaving structure in which the effective sizing adjustment of access transistors in write mode is provided by isolating writing and reading paths. In the proposed cell, we consider a weak inverter to make better write mode operation. Moreover applying boosted word line feature ...
متن کاملDiscrete Circuit Optimization: Library Based Gate Sizing and Threshold Voltage Assignment
Discrete gate sizing and threshold assignment are commonly used tools for optimizing digital circuits, and ideal methods for incremental optimization. The gate widths and threshold voltages, along with the gate lengths, can be adjusted to optimize power and delay. This monograph surveys this field, providing the background needed to perform research in the field. Concepts such as standard cell ...
متن کاملAn Innovative Methodology for the Design Automation of Low Power Libraries
A new methodology for the design of low-power standard cell libraries is presented. The proposed approach addresses power consumption at various steps in the design flow, applying new design automation algorithms and incorporating innovative cell designs. CAD techniques are used to speed development of the library, allowing for quick analysis of power and delay characteristics, with subsequent ...
متن کاملCircuit Sizing and Supply-Voltage Selection for Low-Power Digital Circuit Design
This paper analyzes energy minimization of digital circuits operating at supply voltages above threshold and in the sub-threshold region. Circuit sizing and supply-voltage selection are simultaneously analyzed to determine where the minimum energy solution occurs. In this work we address the effects of architectural modifications on the design choices in different regions of operation. Two new ...
متن کامل